SEO爱站网 logo SEO爱站网

seo小明_初三数学三角形知识点总结归纳 急啊

优化入门 1072 0 2019-09-19 07:30:20

初三数学三角形知识点总结归纳,要把初三所有关于三角形的知识点全部归纳总结出来,有图更好,不要例题,只要知识点~~~~~只关于三角形总结急啊急啊谁帮帮我我困想睡觉好困…

初三数学三角形知识点总结归纳,要把初三所有关于三角形的知识点全部归纳总结出来,有图更好,不要例题,只要知识点~~~~~只关于三角形总结

三角形是多边形中边数最少的一种。它的定义是:由不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。

三条线段不在同一条直线上的条件,如果三条线段在同一条直线上,我们认为三角形就不存在。另外三条线段必须首尾顺次相接,这说明三角形这个图形一定是封闭的。三角形中有三条边,三个角,三个顶点。

这三条线段必须在理解和掌握它的定义的基础上,通过作图加以熟练掌握。并且对这三条线)三角形的角平分线、中线、高线均是线段,不是直线)三角形的角平分线、中线、高线都有三条,角平分线、中线,都在三角形内部。而三角形的高线在当△ABC是锐角三角形时,三条高都是在三角形内部,钝角三角形的高线中有两个垂足落在边的延长线上,这两条高在三角形的外部,直角三角形中有两条高恰好是它的两条直角边。

(3)在画三角形的三条角平分线、中线、高时可发现它们都交于一点。在以后我们可以给出具体证明。今后我们把三角形三条角平分线的交点叫做三角形的内心,三条中线的交点叫做三角形的重心,三条高的交点叫做三角形的垂心。

三角形的三条边,有的各不相等,有的有两条边相等,有的三条边都相等。所以三角形按边的相等关系分类如下:

△ABC的三边长分别是a、b、c,根据公理“连接两点的所有线中,线段最短”。可知:

上述定理和推论实际上是一个问题的两种叙述方法,定理包含了推论,推论也可以代替定理。另外,定理和推论是判定三条线段能否构成三角形的依据。如:三条线便能构成三角形,而三条线,就不能构成三角形。

对于某一条边来说,如一边a,只要满足b-c<a<b+c,则可构成三角形。这是因为b-c<a,即b-c<a,且b-c>-a.也就是a+c>b且a+b>c,再加上b+c>a,便满足任意两边之和大于第三边的条件。反过来,只要a、b、c三条线段满足能构成三角形的条件,则一定有b-c<a<b+c。

在特殊情况下,如果已知线段a最大,只要满足b+ca就可判定a、b、c三条线段能够构成三角形。同时如果已知线段a最小,只要满足b-c<a,就能判定三条线段a、b、c构成三角形。

根据三角形的内角和定理可知,三角形的任一个内角都小于180°,其内角可能都是锐角,也可能有一个直角或一个钝角。

(3)一个三角形至少有一个角等于或小于60°(否则,若三个内角都大于60°;则这个三角形的内角和大于180°,这与定理矛盾)。

(4) 三角形有六个外角,其中两两是对顶角相等,所以三角形的三个外角和等于360°。

怎样根据已知条件准确迅速地找出两个全等三角形的对应边和对应角?其方法主要可归结为:

由全等三角形的定义知,要判定两个三角形全等,需要知道三条边,三个角对应相等,但在应用中,利用定义判定两个三角形全等却是十分麻烦的,因而需要找到能完全确定一个三角形的条件,以便用较少的条件,简便的方法来判定两个三角形的全等。

这个判定方法是以公理形式给出的,我们可以通过实践操作去验证它,但验证不等于证明,这点要区分开来。

公理中的题设条件是三个元素:边、角、边,意指两条边和这两条边所夹的角对应相等。不能理解成两边和其中一个角相等。否则,这两个三角形就不一定全等。

又如,右图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,AC=A′C′,但△ABC和△A′B′C′不全等。

公理强调了两角和这两角的夹边对应相等,这里实质上包含了一个顺序关系。千万不能理解成为在其中一个三角形中是两角和其夹边,而在另一个三角形中却是两角和其中一角的对边。

公理一中的边、角、边,其顺序是不能改变的,即SAS不能改为SSA或ASS。而ASA

公理却能改变其顺序,可改变为AAS或SAA,但两个三角形之间的“对应”二字不能变。同时这个公理反映出有两个角对应相等,实质上是在两个三角形中有三个角对应相等,故在应用过程中只须注意有一条对应边相等就行了。

这个公理告诉我们,只要一个三角形的三边长度确定了,则这个三角形的形状就完全确定了。这就是三角形的稳定性。

通过以上三个公理的学习,可以知道,在判定两个三角形全等时,无需根据定义去判定两个三角形的三角和三边对应相等,而只需要其中三对条件。

斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等(简写为HL)。

这个公理的题设实质上也是三个元素对应相等,其本身包含了一个直角相等。这种边、 边、角对应相等的两个三角形全等成立的核心是有一个角是直角的条件。由于直角三角形是一种特殊的三角形,所以过去学过的四种判定方法对于直角三角形照常适用。

在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题,如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

每个命题都有逆命题,但原命题是真命题,而它的逆命题不一定是真命题,原命题和逆命题的真假性一般有四种情况:真、假;真、真;假、假;假、真。

如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理叫做互逆定理,其中一个叫做另一个的逆定理。

等腰三角形中,相等的两边称为腰,另一边称为底边,两腰的夹角称为顶角,底边上的两个角称为底角。

等腰三角形的判定定理及其两个推论的核心都可概括为等角对等边。它们都是证明两条线段相等的重要方法。

在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

容易证明:这个推论的逆命题也是正确的。即:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

利用等腰三角形的判定定理和性质定理容易证明结论:“在一个三角形内,如果两条边不等,那么它们所对的角也不等,大边所对的角也较大;反过来,在一个三角形中,如果两个角不等,那么它们所对的边也不等,大角所对的边较大。”

“线段垂直平分线的性质定理与逆定理中的“距离”是指“两点间的距离”,而角平分线的性质定理与逆定理中的“距离”是指“点到直线的距离”。

三角形三条角平分线相交于一点,这点到三边的距离相等(这点称为三角形的内心)。

三角形三边的垂直平分线相交于一点,这点到三个顶点的距离相等(这点称为三角形的外心)。

把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么这两个图形叫做关于这条直线对称,也称轴对称。

(2)把其中一个图形沿l翻折后,和应完全重合,自然两个图形中的有关对应点也应重合。

事实上,直线l是两个轴对称图形中对应点连线的垂直平分线。所以容易得到如下性质:

性质2 如果两个图形关于某条直线对称,那么对称轴是对应点连线 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点必在对称轴上。

不难看出,如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

如果一个图形沿着一条直线翻折,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形。

①轴对称是指两个图形关于某条直线对称,而轴对称图形是一个图形关于某条直线对称。

②轴对称的对应点分别在两个图形上,而轴对称图形中的对应点都在这一个图形上。

③轴对称中的对称轴可能在两个图形的外边,而轴对称图形中的对称轴一定过这个图形。

②如果把轴对称的两个图形看成是一个整体,那么这个整体反映出的图形便是一个

轴对称图形;反过来,如果把一个轴对称图形中关于对称轴的两边部分看成是两个

直角三角形中,两锐角互余,夹直角的两边叫直角边,直角的对边叫斜边,斜边最长。

等腰直角三角形是直角三角形中的特例。也是等腰三角形中的特例。等腰直角三角形的两个底角都等于45°,顶角等于90°,相等的两条直角边是腰。

直角三角形中,两直角边a、b的平方和等于斜边c的平方,即,这就是勾股定理。

如果ΔABC的三边长为a、b、c,且满足,那么ΔABC是直角三角形,其中∠C=90°。

勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理。即:在△ABC中,若a2+b2=c2,则△ABC为Rt△。

若c2=a2+b2,则△ABC是以∠C=90°的直角三角形。若c2≠a2+b2,则△ABC不是直角三角形。

这类题目证明起来较一般几何题要难,但还是有一定的思路和方法,一般先对题目进行总体分析,分析内容大致分为以下四点,然后逐步解决。

在解等腰三角形的边角求值题时,应考虑到各种可能的情况,还要排除不能构成三角形的情形。特别在解决线段或角的和差倍半关系时,常利用合成法或分解法,借助添加辅助线: 判定一个三角形是

判定一个直角三角形可利用勾股定理的逆定理、线段的垂直平分线性质或直角三角形的定义等,这些方法都要求掌握并能灵活运用。

几何作图题的每一步都必须有根有据,所以就要求我们掌握好已学过的公理、定理等。要掌握好尺规作图,还要多画多练。

提高分析问题和解决问题能力的方法是多种多样的,而认真的设计课本中例题、习题的变式,挖掘其潜能也是方法之一。课本中的例题、习题为中考命题提供了丰富的源泉,它们具有丰富的内涵,seo小明在由知识转化为能力上具有示范性和启发性,在解题思路和方法上具有典型性和代表性。如果我们不以得到解答为满足,而是在解完之后,深入其中作进一步的挖掘和多方位探索,不仅可得到一系列的新命题,也可从“题海”中解脱出来,达到事半功倍的效果。而且通过不同角度、不同方位去思考问题,探索不同的解答方案,从而拓宽了思路,培养了思维的灵活性和应变能力。

学习几何时,感到例题好学易懂,但对稍加变化拓宽引申的问题束手无策,原因是把例题的学习看成是孤立的学一道题,学完就了事,致使解题时缺乏应变能力,但如果平时能重视对题目的扩充、剖解、串联和改编,就能较好地解决这一问题。

2.剖解:分析原题,将较复杂的图形肢解为若干个基本图形,使问题化隐为显。

3.串联:由例题的形式(条件、结论等),联想与它相似、相近、相反的问题。

我们研究不等式的有关问题时,会发现很多巧妙的方法,还会不断学习掌握类比的数学思想,形数结合的思想,从未知向已知转化的化归思想,通过研究这些不断变化的问题,全面把握不等式及不等式组的解法,从而提高我们分析问题、解决问题的能力。

在平面几何里,证题思路主要有:(1)分析法,即从结论入手,逐步逆推,直至达到已知事实后为止。(2)综合法,先从已知条件入手,运用已学过的公式、定理、性质等推出证明的结论。(3)两头凑,就是将综合法和分析法有机地结合起来思考:一方面“从已知推可知”,从已知看可以推出哪些结论;另一方面“由未知看需知”,从所求结论逆推看需要什么条件,一旦可知与需知沟通,证题思路即有了。添加辅助线是证明几何题的重要手段,也是学习中的难点之一。

一种是从条件出发,通过一系列已确立的命题逐步向前推演,直到达到证题目的,简言之,这是由因导果的方法,我们称之为直接证法或综合法,综合法证题的程序如下:欲证AB,由于AC,CD,…,x,而xB,故AB.

另一种则反过来,先假定命题的结论成立,考虑达到目的需具备什么条件,通过一系列的逆推直到回朔到已知条件为止。简言之,这是执果索因的方法,我们称之为分析法,分析法证题的程序如下:欲证“AB”,也就是BA,若能分析出BC,CD,…,x,而xA,则断言BA,也就是AB。

在实际操作上,往往把这两种方法结合起来,先分析探求铺路,再综合解题成功,简言之就是“倒着推,顺着走”。

在几何证题中,常需要将一个图形进行适当的变换,常见的几何变换有全等变换,等积变换和相似变换。

1.平移:将图形中的某些线段乃至整个图形平行移动到某一适当位置,作出辅助图形,使问题得

2.旋转:将平面图形绕平面内一定点M旋转一个定角α得到与原来形状和大小相同的图形,这样

旋转变换的主要性质:(1)变换后的图形与原图形全等;(2)原图中任一线段与旋转后的对应线段所成的角等于旋转角。

3.对称:将一个图形(或它的一部分)绕着一条直线°,得一个与原来形状、大小完全相同的图形,这种变换称为轴对称变换,轴对称变换的主要特点是:对称轴是一切翻转前后对应点连线的垂直平分线。

复杂的图形都是由较简单的基本图形组成,故可将复杂的图形分解成几个基本图形这样使问题显而易见。

两头“凑”的方法,也就是综合运用以上两种方法才能找到证明思路。(又叫分析――综合法)。

转化思想就是将复杂问题转化、分解为简单的问题;或将陌生的问题转化为熟悉的问题来处理的一种思想。

初中数学定理公式归纳1 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 2 等腰三角形的顶角平分线、底边上的中线等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 4推论 2 有一个角等于60°的等腰三角形是等边三角形 5在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 6直角三角形斜边上的中线定理 线段垂直平分线上的点和这条线段两个端点的距离相等 8逆定理 和一条线段两个端点距离相等的点,在这条线线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 10定理1 关于某条直线对称的两个图形是全等形 11定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 13逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 15勾股定理的逆定理 如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形

转载请注明:SEO爱站网 » seo小明_初三数学三角形知识点总结归纳 急啊

网友跟帖
展开